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In this paper, by using well-known Eddington–Finkelstein coordinates instead of
Painlevè coordinates, we study the tunnelling effect of the black holes once again.
As examples of the static and stationary black holes, we calculate the tunnelling rates
of Schwarzschild and Kerr black holes. In addition, the result obtained by adopting
Eddington–Finkelstein coordinates is in agreement with the Parikh’s and Zhang’s re-
cent work which adopts the Painlevè coordinates. At last, we discuss carefully the
condition that the coordinates system in which we study the tunnelling process should
satisfy. In our opinion, the terms of the tunnelling effect are not as strict as ones in
Parikh’s paper and could be softened properly.
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1. INTRODUCTION

Over 30 years ago, Stephen Hawking discovered that basic principles of quan-
tum field theory lead to the emission of thermal radiation from a classical black
hole (Hawking, 1975), which gives rise to a famous paradox—the information
loss paradox of black hole physics. Recently, Parikh and Wilczek treated Hawking
radiation as a tunnelling process in order to solve the information loss paradox
(Parikh, 2004a, 2004b; Parikh and Wilczek, 2000). They obtained a leading cor-
rection to the emission rate arising from loss of mass of the black hole. Following
this method, Zhang and Zhao extend the investigation to stationary axisymmetric
Kerr black holes and the result is successful (Zhang and Zhao, 2005). However,
there are two difficulties to overcome in the calculation of the tunnelling rate. The
first is that there do not seem to be any barrier. The second is that in order to
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do a tunnelling computation, one requires to find a coordinate system which is
well-behaved at the event horizon.

To overcome the first difficulty, they think that the barrier is created by the
outgoing particle itself and energy (ADM energy) must be conserved. As the black
hole radiates, it loses energy. Because the energy and radius of the event horizon
are related, the black hole has to shrink. It is this constriction that sets the scale:
the horizon recedes from its original radius to a new, smaller radius. Moreover, the
amount of constriction is related to the energy of the outgoing particle. So, there is
no pre-existing barrier and it is the tunnelling particle itself that defines the barrier
(Parikh and Wilczek, 2000).

In order to overcome the second difficulty, Parikh introduced the Painlevè

coordinates (1921), t = ts + 2
√

2mr + 2m ln
√

r−√
2m√

r+√
2m

, where ts is Schwarzschild

time and t is Painlevè time. The Painlevè metric has many attractive features.
Firstly, the components of the metric in Painlevè coordinates are regular, not
diverging at the event horizon. Secondly, constant-time slices are just flat Euclidean
space. In paper (Parikh, 2004a), this feature is rather important because the WKB
approximation is applied to calculate the tunnelling rate. WKB approximation
is derived from the quantum mechanics which is right in flat space. Thirdly,
there exists a time-like killing vector field, which is important to the energy
conservation. Finally, because in quantum mechanics, particle tunnelling a barrier
is a instantaneous process, Zhao and Zhang (2005) suggest that the metric in
the coordinates should satisfy Landau coordinate clock synchronization condition
(Landau and Lifshitz, 1975). Fortunately, the metric in the Painlevè coordinates
does satisfy Landau coordinate clock synchronization condition.

In our opinion, the main aim and the crucial point to introduce a new coordi-
nate system is to eliminate the singularity of the components of the metric at the
event horizon. It is not only the Painlevè coordinates which satisfy the condition
above. The well-known Eddington–Finkelstein coordinate, v = t + r∗, is rather
suitable to study the tunnelling effect too, where r∗ is the tortoise coordinate.
When we use the Eddington–Finkelstein coordinates instead of the Schwarzschild
coordinates, the components of the metric are not singular too. So, we believe
that we could study the tunnelling process adopting Eddington–Finkelstein coor-
dinates. In this paper, using the Eddington–Finkelstein coordinate, we calculate
the tunnelling rate of the Schwarzschild and the Kerr black holes. The results
are rather successful and in agreement with Parikh (2004a) and Zhang and Zhao
(2005) results, respectively. Eddington–Finkelstein coordinates have some merits
too. The line elements of the black holes in Eddington–Finkelstein coordinates
are more simple than the line elements in Painlevè coordinates, which make us
calculate the tunnelling rate more easily. It is interesting that the constant-time
slices in Eddington–Finkelstein coordinates are not flat Euclidean space. Accord-
ing to the condition that the constant-time slices should be flat Euclidean space



Hawking Radiation via Tunnelling 1223

(Parikh, 2004b), it seems that the WKB approximation could not be used to study
the tunnelling process in Eddington–Finkelstein coordinates. We, however, will
calculate the tunnelling rate of both the Schwarzschild and Kerr black holes and
obtain the correct results. The reasonable explanation is that the WKB approxi-
mation could be extended to the space which is not flat Euclidean, although the
WKB approximation is derived from the quantum mechanics. So, in our opinion,
the conditions which the coordinate system should satisfy in Parikh’s paper is too
strict and could be softened properly. In addition, another important condition that
the coordinates system should satisfy is that the event horizon and the time-like
limit surface should coincide because we use WKB formula when we calculate
the tunnelling rate. The WKB approximation could be used only when the lan-
guage of a point particle is appropriate at the event horizon. Because the infinite
blue-shift takes place near the time-like limit surface, the characteristic wave-
length of any wave packet is always arbitrarily small there and the geometrical
optics limit becomes an especially reliable approximation. So, the event horizon
and the time-like limit surface should be identical as we study the tunnelling
effect.

The paper is organized as follows. In Sections 2 and 3, we calculate the
tunnelling rate of the Schwarzschild and the Kerr black holes, respectively. Finally,
we will discuss the conditions of the coordinates which could be used to study
the tunnelling rate. Throughout the paper, the units G = c = h = kB = 1 are
used.

2. TUNNELLING EFFECT FROM SCHWARZSCHILD BLACK HOLES

To describe tunnelling process, it is necessary to choose coordinates which are
not singular at the event horizon. We choose Eddington–Finkelstein coordinate,
v = t + r∗, not the Painlevè coordinates, to study the tunnelling effect, where
r∗ = r + 2m ln( r

2m
− 1) is tortoise coordinate. With this choice, the line element

reads

ds2 = −
(

1 − 2m

r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdϕ2) (1)

Comparing with the line elements in Painlevè coordinates (1921)

ds2 = −
(

1 − 2m

r

)
dt2 + 2

√
2m

r
dtdr + dr2 + r2d�2, (2)

the line elements (1) are more simple, which make the calculation more eas-
ily. It is obvious that the components are not diverging at the event horizon
in Eq. (1) and

(
∂
∂v

)a
is a time-like vector field. One distinction between these

two kinds of the coordinates is that the constant-time slices of the line ele-
ments in the Eddington–Finkelstein coordinates are not flat Euclidean space. The
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calculation below will show that this is not important to study the tunnelling
process.

The radial null geodesics in Eddington–Finkelstein coordinates obey

ṙ ≡ dr

dv
= 1

2

(
1 − 2m

r

)
(3)

Equations (1) and (3) are modified when the self-gravitation of the particle
is considered. We could consider the particle with energy ω as a shell of energy.
We fix the total mass (ADM mass) and allow the hole mass to fluctuate. When
the shell of energy ω travels on the geodesics, we should replace m with m − ω

in the geodesic Eq. (3) and in the line elements Eq. (1) to describe the moving of
the shell (Parikh and Wilczek, 2000).

In our picture, a point particle description is appropriate. Because of the
infinite blue shift near the horizon, the characteristic wavelength of any wave
packet is always arbitrarily small there, so that the geometrical optics limit becomes
an especially reliable approximation. The geometrical limit allows us to obtain
rigorous results directly in the language of particles, rather than having to use the
second-quantized Bogolubov method. In fact, the point particle description here
demands that the event horizon and the time-like limit surface coincide because the
infinite blue shift occur only near the time-like limit surface. Fortunately, the two
surfaces are identical to the Schwarzschild black hole in Eddington–Finkelstein
coordinates. In the semiclassical limit, we could apply the WKB formula. This
relates the tunnelling amplitude to the imaginary part of the particle action at
stationary phase. The emission rate, �, is the square of the tunnelling amplitude
(Parikh, 2004b):

� ∼ exp (−2 ImS) (4)

The imaginary part of the action for an outgoing positive energy particle
which crosses the horizon outwards from rin to rout could be expressed as

ImS = Im
∫ rout

rin

pr dr = Im
∫ rout

rin

∫ pr

0
dp′

r dr (5)

where pr is canonical momentum conjugate to r , rin = 2m is the initial radius of
the black hole, and rout = 2(m − ω) is the final radius of the hole. We substitute
Hamilton equation ṙ = dH

dpr
|r into Eq. (5), change variable from momentum to

energy, and switch the order of integration to obtain

ImS = Im
∫ m−ω

m

∫ rout

rin

dr

ṙ
dH = Im

∫ ω

0

∫ rout

rin

2dr

1 − 2(m−ω′)
r

(−dω′) (6)
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We have used the modified Eq. (3) and H is the ADM energy of the space-time
(Parikh, 2004b). In Eq. (6), r = r ′

H = m − ω′ is the first-order pole. Now the
integral can be done by deforming the contour, so as to ensure that positive energy
solutions decay in time (that is , into the lower half ω′ plane) (Parikh, 2004b). In
this way we obtain

ImS = 4πω
(
m − ω

2

)
(7)

The tunnelling rate is therefore

� ∼ exp (−2 ImS) = exp
[
−8πmω

(
1 − ω

2m

)]
= exp (�SBH) (8)

where SBH is the Bekenstein–Hawking entropy. This result is in agreement with
Parikh’s work. Although the constant-time slices are not flat Euclidean space,
using the WKB approximation, we obtain the correct result. This shows that
WKB approximation could be extended to the space which is not flat Euclidean.

3. TUNNELLING EFFECT FROM KERR BLACK HOLES

The line element of the non-stationary Kerr black hole in Eddington–
Finkelstein coordinates could be written as (Carmeli, 1982)

ds2 = −
(

1 − 2m (v) r

ρ2

)
dv2 + 2dvdr − 4m (v) ra sin2 θ

ρ2
dvdϕ + ρ2dθ2

−2a sin2 θ drdϕ +
[

(r2 + a2) + 2m (v) ra2 sin2 θ

ρ2

]
sin2 θ dϕ2 (9)

If m is a constant, not the function of time v, the metric (9) could return to the
stationary Kerr black hole in Eddington–Finkelstein coordinates

ds2 = −
(

1 − 2mr

ρ2

)
dv2 + 2dvdr − 4mra sin2 θ

ρ2
dvdϕ + ρ2dθ2

−2a sin2 θ drdϕ +
[

(r2 + a2) + 2mra2 sin2 θ

ρ2

]
sin2 θ dϕ2 (10)

= g00 dv2 + 2dvdr + 2g03 dvdϕ + ρ2 dθ2 + 2g13 drdϕ + g33 dϕ2

where

ρ2 = r2 + a2 cos2 θ (11)

	 = r2 + a2 − 2mr (12)

We will study the tunnelling effect in this coordinates; Zhang and Zhao (2005)
studied it in Painlevè coordinates before. Although the components of the metric
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in Eq. (10) are not singular, we have to introduce the dragging coordinate system.
The reason is that the event horizon does not coincide with the time-like limit
surface. Let

dϕ

dv
= −g03

g33
= � (13)

The line element of Kerr black hole can be rewritten as

ds2 = − ρ2	

(r2 + a2)2 − 	a2 sin2 θ
dv2

+2[(r2 + a2)2 − 	a2 sin2 θ − 2a2mr sin2 θ ]

(r2 + a2)2 − 	a2 sin2 θ
dv dr + ρ2dθ2

= g̃00 dv2 + 2g̃01 dv dr + ρ2dθ2 (14)

In line element (14), from g̃00 = 0, we could get r = r+, where r+ is the radius
of the event horizon. The radial null geodesics could be written as

ṙ = dr

dv
= ρ2	

2[(r2 + a2)2 − 	a2 sin2 θ − 2a2mr sin2 θ ]
(15)

When a particle of energy ω and angular momentum ωa tunnels out, the
mass and the angular momentum of the black hole will become to m − ω and
(m − ω) a. So, we should replace m with m − ω in the line element (14) and the
geodesic Eq. (15). The imaginary part of the action could be written as (Zhang
and Zhao, 2005)

ImS = Im

[∫ rout

rin

∫ Pr

0
P ′

r dr −
∫ ϕout

ϕin

∫ Pϕ

0
P ′

ϕ dϕ

]
(16)

where Pr and Pϕ are two canonical momentum conjugates to r and ϕ, respectively.
Applying the Hamilton equation, we could get

ṙ = dH

dPr

= − dω

dPr

(17)

ϕ̇ = dH

dPϕ

= �H dJ

dPϕ

= −a�H

dω

dPϕ

(18)

where �H = − g03

g33
|r=r+ . dH = �H dJ represents energy changes of hole due to

the loss of the angular momentum when a particle tunnels out. So, we could get

Im S = Im

[∫ ω

0

∫ rout

rin

dr

ṙ ′ d(−ω′) −
∫ ω

0

∫ ϕout

ϕin

dϕ

ϕ̇′ a�′
H d(−ω′)

]
(19)
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From ϕ̇ = dϕ

dv
and ṙ = dr

dv
, we could obtain dϕ

ϕ̇
= dr

ṙ
. Eventually, Eq. (19) becomes

to

ImS = Im

[∫ ω

0

∫ rout

rin

dr

ṙ ′ d(−ω′) −
∫ ω

0

∫ rout

rin

dr

ṙ ′ a�′
H d(−ω′)

]
(20)

where ṙ ′ ≡ ṙ (m − ω′) and �′
H ≡ �H (m − ω′). Substituting ṙ ′ and �′

H into the
Eq. (20), we could obtain

ImS =
{

Im
∫ ω

0

∫ rout

rin

2[(r2 + a2)2 − 	′a2 sin2 θ − 2a2(m − ω′)r sin2 θ ]

ρ2	′ dr(−dω′) (21)

−
∫ ω

0

∫ rout

rin

2[(r2 + a2)2 − 	′a2 sin2 θ − 2a2(m − ω′)r sin2 θ ]a[2(m − ω′)ra]

ρ2	′[ρ2(r2 + a2) + 2a2(m − ω′)r sin2 θ ]
dr(−dω′)

}

(22)

where 	′ ≡ r2 + a2 − 2(m − ω′)r = (r − r ′
+)(r − r ′

−) and r ′
+ ≡ r+(m − ω′). It

is manifest that r = r ′
+ is the first-order pole in the integral of Eq. (21). Doing the

integral of r firstly, we could obtain

ImS = (−π )
∫ ω

0

2(m − ω′)2 + 2(m − ω′)
√

(m − ω′)2 − a2 − a2√
(m − ω′)2 − a2

d(−ω′) (23)

At last, we could get

ImS = π

[
m2 − (m − ω)2 + m

√
m2 − a2 − (m − ω)

√
(0m − ω)2 − a2

]
(24)

The tunnelling rate is therefore

� ∼ exp (−2 ImS) = e	SBH (25)

where SBH is the Bekenstein–Hawking entropy.

4. CONCLUSION AND DISCUSSION

In this section, we will sum up the main points of the coordinates used to
study the tunnelling effect.

First, the components of the metric in the coordinates should be regular
at the event horizon and there should be a time-like killing vector field, such
as the Painlevè and Eddington–Finkelstein coordinates. If the time-like killing
vector field does not exist, the energy conservation would not be tenable. The
condition that the constant-time slices should be the flat Euclidean space is not
very important. The constant-time slices in line elements (1) and (14) are not the
flat Euclidean space. The calculation in Sections 2 and 3, however, is shown that
the WKB approximation is also tenable in the space which is not flat Euclidean.

Second, the event horizon and the time-like limit surface should coincide in
the coordinate. We use the semi-classical WKB formula which is only tenable in
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the case of the infinite blue-shift near the horizon when we study the tunnelling
process. In addition, if from g00 = 0 we could not obtain the event horizon, the
first-order pole in Eq. (6) and (21) would be at the time-like limit surface r = rTLS,
not at the event horizon, where rTLS is the radius of the time-like limit surface.
This means that the particle tunnels out of the time-like limit surface, not event
horizon. It is well known, however, that Hawking radiation comes from the event
horizon, not from the time-like limit surface.

Finally, in quantum mechanics, particle tunnelling a barrier is an instan-
taneous process. So, Zhang and Zhao (2005) suggests that the metric in the
coordinates should satisfy Landau coordinate clock synchronization condition
(Landau and Lifshitz, 1975). In fact, in the tunnelling process, after the particle
tunnels out of the horizon, it is impossible for the particle to return to the place
of departure–the place just inside the event horizon. The clocks staying along
the radial direction could be always adjusted synchronously. So, we could study
the tunnelling effect in the coordinates which do not satisfy the Landau coordinate
clock synchronization condition, although the line elements of the Kerr black hole
in Eddington–Finkelstein coordinates satisfy this condition.
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